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Let Zp be the partition function over internal configurational degrees of freedom 
of a p-particle cluster. The existence of the limit, as p ~ oo, of (tip) - 1 log Zp is 
demonstrated for the square, triangle, hexagon, simple cubic, face-centered 
cubic, and body-centered cubic lattice gas models, and for continuous space 
models with potentials satisfying stability and tempering conditions. Pairwise, 
finite-range bonding is assumed throughout. 
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1. INTRODUCTION 

An object  of  pa ramount  interest in the theory of  metas tabi l i ty  and nucleat ion 
is the physical  cluster, an aggregate of  molecules which may  grow into a 
nucleus of  the new, the rmodynamica l ly  stable phase. (1-3) Quant i ta t ive 

predict ions of  the nucleat ion rate are based on the Becker -D6r ing  
equations,  (4) which describe the kinetics of  cluster growth. To evaluate the 
rate constants  in these equations,  or to determine the cluster size distr ibution 
in a vapor,  one needs to know the free energy of  format ion as a function of  
cluster size. 

It is commonly  assumed that  the asymptot ic  the rmodynamic  propert ies  
of  clusters are well defined and identical  to those of  the new phase. While  it 
would be surprising if either of  these assumptions  turned out to be incorrect,  
neither has been proved for any model. Impor tan t  pre l iminary  results in this 
regard are the upper and lower bounds on the cluster free energy established 
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by Penrose and Lebowitz (5) for the square lattice gas. In this paper we prove 
the existence of the limiting cluster free energy density for various lattice gas 
models, and for continuous space models with potentials satisfying modified 
stability and tempering conditions. 

Given a pairwise bonding criterion depending on the mutual potential 
energy of two particles (thus on their relative position but not on their 
momenta), a cluster is defined as a collection of particles connected by a 
network of bonds. We focus attention on the partition function of a single, 
isolated cluster. The partition function is evaluated over all internal 
configurational degrees of freedom, the cluster being centered in a volume 
large enough to accomodate all connected configurations, but otherwise 
unspecified. If the idealizations of pairwise, proximity bonding are made 
(and they usually are in nucleation theory(6)), the evaluation of such a 
partition function is all that is required for computing cluster free energies. 
The above idealizations are justified at the low temperatures and densities 
that obtain in many nucleation experiments, although one does not expect 
them to be adequate near the critical point. 

The existence of the limiting cluster free energy density is not implied 
by the well-known results on the existence of the thermodynamic limit for 
systems of interacting particles. (7-9) In the thermodynamic limit the number 
of particles p and the volume of the system grow without bound, with the 
density (or average density) held fixed, while in the cluster problem 
considered here, the volume must grow as pa (or faster) in d dimensions to 
encompass all connected configurations. Without the constraint of connec- 
tedness, the number of p-particle configurations would grow as exp 
(const pa), and so for d > 1 there would be no limiting free energy density. 
Through its restriction of configuration space, connectedness plays an 
essential role in the existence of the cluster free energy. 

In Section 2 we extend the Penrose and Lebowitz lower bound on the 
free energy of clusters in the square lattice gas to other two- and three- 
dimensional lattices. We then state a key lemma and prove the existence of 
the cluster free energy density for the lattice gas models. In Section 3 we 
consider continuous space models, and show that for a wide class of 
potentials, the conditions of the lemma are satisfied, proving the existence of 
the cluster free energy density for these models. 

2. EXISTENCE OF THE FREE ENERGY DENSITY FOR LATTICE GAS 
CLUSTERS 

We consider a classical lattice gas, on lattice L, with a nearest-neighbor 
attractive potential --~ (0 < e < oo). Particles on neighboring sites are said to 
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be bound, and a cluster is a maximal connected set of occupied sites. The 
partition function over internal degrees of freedom of a p-particle cluster is 

Z~ = S' Ck(x) (I) 
XIN(X) =p 

where ~ = e  ~" is the Boltzmann factor per bond (fl is the inverse 
temperature), and the sum includes exactly one representative from each 
class of translationally equivalent p-particle cluster configurations, k(X) is 
the number of bonds in configuration X. In a recent paper ~1~ we showed that 

L L L Zp+p, >/ (2) Zp Zp, 

We now derive an upper bound on log Z~. In a lattice with coor- 
dination number q, a p-particle cluster has fewer than ~qp bonds, and so 

log Z~ ~ lqpfle + log a(L;p) (3) 

where a ( L ; p )  is the number of translationally nonequivalent p-particle 
cluster configurations in lattice L. Penrose and Lebowitz ~5) used the Peierls 
construction m'12) to show that for the square lattice, Z 2, 

a(Z:;  p) < 93zp (4) 

The argument of Penrose and Lebowitz may be paraphrased as follows. 
There is a (one-to-many) correspondence between clusters in a lattice and 
contours (simple, closed walks) in the dual lattice. If the cluster is simply 
connected (contains no vacancies), then the contour is formed by placing an 
edge accross each boundary bond (each bond between an occupied site and 
an unoccupied site). If the cluster contains vacancies, some of its bonds are 
cut, so that a contour which traverses these bonds, as well as the original 
boundary bonds, encloses a site if and only if it is occupied. The contour of 
a p-particle cluster consists of at most (q - 2)p  + 2 steps, so 

( q - 2 ) p + 2  

wN (5) 
N=3  

where wN is the number of translationally nonequivalent simple, closed walks 
of N steps in the dual lattice. Noting that for the square lattice (q----4), 
wN~< 3 N-2 i f N  is even, and wN= 0 for N odd, we recover (4). 

To obtain an upper bound on a ( L ; p )  for the hexagon lattice, we note 
that in the triangle lattice (dual to hexagon), w N ~< 3 �9 5 N-2, since there are 
three possible arrangements of the two steps incident on the lowest, leftmost 
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corner, and since each of the remaining steps may be oriented in at most five 
ways. Thus 

p + 2  

o ( ~ ;  p) ~< 3 ~.  5 "-2 < ~-5  p (6) 
. = 3  

A similar argument yields the upper bound 

2p+ 1 
4 A2P a ( A ; p ) ~  ~ 2 2" 2 < ~  (7) 

r t=3 

for the triangle lattice. 
The contour of a cluster in the simple cubic lattice may be constructed 

by placing a plaquette (unit square) across each boundary bond. As in the 
two-dimensional case, bonds within the cluster may be cut, so that the 
contour encloses a site iff it is occupied. Thus Eq. (5) applies if we interpret 
w N as the number of translationally nonequivalent, simple closed surfaces 
composed of N plaquettes. To derive an upper bound on w N, note first that 
there is one corner, a, where the orientations of three plaquettes are fixed. 
This corner may be taken as the one with coordinates (x  a, Ya, Za), where 
x a = inf{xj}, ya = inf{yj I x i = x~}, and z~ = inf{z~ I x s = x~, yj = y~}, where 
(x~, Yi,  z i)  are the coordinates of the ith corner in the contour. An argument 
due to van der Waerden ~ shows that the number of arrangements of the 
remaining N -  3 plaquettes cannot exceed 3 N-3. The rest of the surface may 
be constructed by attaching new plaquettes at free edges of plaquettes 
already present, and the order of placement can be fixed unambiguously. For 
example, we may attach the next plaquette at the free edge whose center has 
extreme coordinates (the same rule as was used to pick corner a). Each of 
the N - -  3 plaquettes not touching corner a may be oriented in at most three 
ways, and so w u <~ 3 N-3. Equation (5) then implies that 

2p+ 1 

a(z ; p) 3 < 3 (8) 
n ~ 3  

For the proof in Section 3 we shall also require upper bounds on the 
number of cluster configurations in lattices with longer-range bonding. A 
collection of occupied lattice sites which is connected if we allow bonds 
between first, second,..., up to nth neighbors will be called a cluster  o f  type n. 
A simple extension of the Penrose-Lebowitz construction provides an upper 
bound on a~2)(772; p), the number of (translationally nonequivalent) type-2 
cluster configurations in the square lattice (see Fig. 1). The contour of such a 
cluster may be constructed in the same manner as for nearest-neighbor (type- 
1) clusters, as is illustrated below. The contour does not cross a second 
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Fig. 1. 

i__ 
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Construction of the contours of type-2 clusters in the square lattice. 

neighbor bond, unless the bond has been cut so as to render the cluster 
simply connected, as in the example on the right side of Fig. 1. 

The contour of a p-particle, type-2 cluster consists of at most 4p steps, 
and so from Eq. (5) we have 

2p 3 4p 
a~2)(Z2; p) ~< ~ 32"-2 < (9) 

n=2 

An analogous construction leads to the bound 

3p 3 6p 
a~2)(7/3;p) ~< ~ 32"-3 < - -  

.=3 24 
(10) 

for type-2 clusters in the simple cubic lattice. The right-hand side of Eq. (10) 
also serves as an upper bound on a (FCC; p), the number of (type-l) cluster 
configurations in the face-centered cubic lattice. This follows from the obser- 
vation that if bonding in the simple cubic lattice is restricted to second 
neighbors only, we obtain the FCC bonding structure. 

Deriving a bound on 0"(3)(•3;p), the number of type-3 cluster 
configurations in the simple cubic lattice, necessitates a modification of the 
procedure used so far. For if we employ the construction used above, we find 
that the contour of a type-3 cluster may contain cubes which touch only at a 
corner. The Peierls argument does not seem to be useful in bounding the 
number of contours of the kind. Instead, we note that a type-3 cluster, if it is 
not already also a type-2 cluster, may be converted into one by placing 
additional particles at certain unoccupied sites. This conversion, which 
establishes a connecting network of nearest- and/or next-nearest-neighbor 
bonds, requires the addition of at most p - 1 new particles. 

Let r(Y) be the minimum number of particles needed to convert a type- 
3 cluster, Y, into a type-2 cluster. Each type-3 cluster o f p  particles may be 
obtained by removing r(Y) particles from a certain (p + r(Y))-particle, type- 
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2 cluster. The number of p-particle, type-3 clusters corresponding to a given 
t-particle, type-2 cluster cannot exceed (~), and so 

) G(3)(~3; p) ~ ~-7 p + r a~z)(~ 3 

r~O P 
; p + r ) < - ~ - 4  22p312p-6 (11) 

The right-hand side of Eq. (11) is also an upper bound on a(BCC;p) ,  the 
number of p-particle, type-1 cluster configurations in the body-centered cubic 
lattice, for if, in the simple cubic lattice, we restrict bonding to third 
neighbors only, we obtain the BCC bonding structure. 

In all the cases examined, we have seen that a(L; p) < e el', where c is a 
finite constant which depends on the lattice. From Eq. (3) we therefore 
conclude that there is a finite constant C(L) such that (tip)- ~ log Z~ < C(L) 
for all p. 

Lemma. 
satisfying 

Let Yp ( p =  1,2, 3,...) be a sequence with Y1 > 0, and 

> r,r,,  (12) 

and let 

yp - p-~ log Yp < C < oo (13) 

for all p. Then yp converges to a limit. 

The proof is given in the Appendix. For the square, triangle, hexagon, 
simple cubic, FCC, and BCC lattices, the sequence Z~ has been shown to 
satisfy the conditions of the lemma. Hence for these lattices we have the 
following: 

Theorem. Let Z~ be the partition function over internal degrees of 
freedom of a p-particle cluster in a lattice gas with nearest-neighbor 
attractive interactions. Then the limiting free energy density 

~c = lim -- (flp)-~ log Z~ (14) pocO 

exists for all temperatures. 

3. PROOF FOR STABLE, TEMPERED POTENTIALS 

In this section we prove the existence of the limiting cluster free energy 
density for continuous space models in two and three dimensions, where the 
potential U and the cluster definition satisfy the following conditions: 
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(i) There is a constant ~ 0 > - ~  such 
configurations X =  {x~ .... ,xp}, 

that for all cluster 

..... ( 1 5 )  

(ii) If X =  {x I .... ,xp} and X '  = {x~ ..... x~,} are cluster configurations, 
then there is a region A ~ f~a with volume/ l (A) />  a > 0, such that for x G A, 
X"  = {x~,..., xp, x~ + x ..... x~, + x} is a cluster configuration and 

u(x") <. u(x) + u(x') (16) 

(iii) Particles i and j are bound iff 0 < r 0 ~ t x i - x j [ ~ < 2 < o o .  A 
cluster configuration must have a connecting network of  pairwise bonds. 

Conditions (i) and (ii) are analogous to the stability and strong 
tempering conditions encountered in proofs of  the thermodynamic limit. 
Condition (iii) simply expresses finite range bond ing- -a  cutoff on the 
potential is not required. The presence of  a connecting network of  pairwise 
bonds is a necessary condition for a cluster; supplementary restrictions on 
the potential energy may also be imposed. 

Examples of pairwise potentials and bond definitions satisfying 
conditions (i)-(iii) are: (1) the hard-core square well potential 

V(r)  = 

+oo,  r < r o 

--e, r 0 ~< r ~< 2 

0, r > 2  

(17) 

with particles i a n d j  bound iff r 0 ~< I x i - x  j[ ~<2, and, (2 ) the  Lennard-Jones 
potential 

= - (18) 

with particles i a n d j  bound iff V(Ix i - xjl ) ~< a < 0 (a > e). These potentials 
satisfy conditions (see Refs. 8 and 9) which ensure the validity of Eq. (15) 
for all configurations. That  the H C S W  model satisfies condition (ii) may be 
seen as follows. Let x R = supxi~xX i and let x~ = infx/~x, x[, where x i is the x 
component of  x i. Let A be the set of points x such that x />  xR + ro and 
I x -  xR]~< 2. Clearly Ft(A) is the same for all X, and/~(A) > 0. If  we translate 
X '  rigidly so that x~ E A, we generate, from X and X '  a new cluster X"  with 
k ( X " )  >~ k ( X ) +  k ( X ' ) +  1. Similarly, for the Lennard-Jones model we may 
take xR and x~ as above, and A as the set of  points x satisfying x />  x R + r 1 
and Ix - x~l ~ r2, where r 1 < r 2 and V(r , )  = V(r2) = a. 
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The cluster partition function over internal configurational degrees of 
freedom is 

Z 1 p = ~. f~edx2 . . .  d x p  e -be(x) (19) 

where cg indicates the restriction to connected configurations. Particle 1 is 
fixed at the origin. We now show that Zp satisfies condition (13). From 
Eq. (15) we have that 

e-6':~ ( 
Zp <~ ---~. j~edx2 ... dxp = e -~~  (20) 

To place an upper bound on Ip, we establish a correspondence between 
cluster configurations and configurations of particles in a square or cubic 
lattice. Mark off such a lattice (of the same dimensionality, d, as the model 
under consideration), with spacing )L Let s of the cells be occupied by 
particles belonging to cluster configuration X =  {Xl,...,xp}. In the lattice 
which is dual to the one just constructed, we take a site to be occupied iff its 
corresponding cell contains at least one particle in X. Suppose x~, xj C X are 
the coordinates of a bound pair. If particles i and j are not in the same cell, 
then, in two dimensions, they occupy cells with either an edge or a corner in 
common, corresponding to nearest or next-nearest neighbors in the dual 
lattice. Similarly, in three dimensions, a pair of bound particles are either in 
the same cell, or they occupy cells sharing a face, an edge, or a corner, 
corresponding to a pair of nearest-neighbor, next-nearest-neighbor, or third- 
neighbor sites in the dual lattice. Thus the set of occupied sites 
corresponding to cluster configuration X is a cluster of type d (as defined in 
Section 2), in d dimensions (d = 2 or 3). 

We may classify configurations in Ip according to their corresponding 
lattice cluster, and write 

s = l  t'IN(Y)=s \ n l = l  " ' "  ns~_-i / = 

where the second sum is over (translationally nonequivalent) s-particle type 
d cluster configurations, n i is the number of particles in the ith occupied cell, 
and * indicates the restriction: ~ i  ni = P. I~)(Y; nl ,..., ns) is the integral over 
all connected configurations {xl .... ,xp}, where x ~ = 0  and Xl,...,x , are 
restricted to the first occupied cell, X,l+ ~,..., x,l +,2 to the second, etc. Since 



Proof of the Existence of the Cluster Free Energy 443 

we have 

5 = 1  

In Section 2 it was shown that for d = 2 or 3, 

a(a)(Za; s) < e c(a)~ 

Thus 

(22) 

Ip ~ }~ d(p-1) eC(dIP( l .-1- e - C ( d ) )  p - 1  (23) 

We conclude that for models satisfying conditions (i) and (ii), there is a 
finite constant C' such that 

f l - i  log Z ,  < -fie 0 + d l log 21 + C' (24) 

It remains to show that Zp satisfies condition (12). Consider a pair of 
configurations (X, X')  occurring in the product 

z , z , , -  1 . . .  . . .  d x ; ,  8-~[u(x)+u(x')l (25) p'p'! 

Condition (ii) assures the existence of a region A about X, such that if X' is 
translated rigidly so that x~ E A, we obtain a p + p'-particle cluster. The 
contribution to Zp+p, due to clusters formed from the pair (X,X') is, by 
(16), at least ae -~[v(x)+v(x')], hence 

aZp+p, >/(aZp)(aZp,) (26) 

Thus aZp satisfies the conditions of the lemma, which proves the existence of 

l i m p - '  log Zp = lira p-1 log(aZp) (27) 
p~OO p --+oO 

Thus the theorem of Section 2 applies if Zp is the internal configurational 
partition function of a p-particle cluster for a continuous space model (d = 2 
or 3) satisfying conditions (i)-(iii). 

Our result shows that for a large class of potentials and bonding 
definitions, the physical cluster approach to the theory of condensation 
introduced by Bijl, (14) Band, (15) and Frenkel (16) is self-consistent. 
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A P P E N D I X .  PROOF OF L E M M A  4 

Let Yp be a sequence satisfying conditions (12) and (13). First note that 

Y2" = 2 - "  log Y2. ) 2-(n- l )  log Y2.-1 = Y2"-~ (A1) 

which, together with (13), implies that lim._.oo Y2. = Y. Now consider y .  for 
2 m-I < n < 2 m, i.e., n = 2 m-1 + j ,  where j has the binary expansion 

m - 2  

j =  ~ a .2"  (A2) 
r t=0 

with each a n either zero or one. By repeated application of (12) we have 

m--2  

log Y2,,,-,+; >~ log Y2,.-, + ~ a .  log r~. (A3) 
n = 0  

Dividing by 2 m-1 + j,  this becomes 

2m-1 .*-2 2 n 
Y2~-,+j>~ 2 r n _ l + j  Y2m-~+ ~ a .  2m_1+ j Y2" 

n = 0  

m--2  2" 
= Y2m-1- Z a .  2m-1 (Y2m-,- Y2.) 

,=0 + J  
1 [ m 1 2 - 1 ]  

?z 
> Y2,,,-, 2m-, Z 2 (Y2,,, , --  Y2,,) 

rt=O 

l m--2  

S~ 2"(yz , , -1-  Y2~) (A4) 
2m-I n=tm/2l 

where square brackets indicate the largest integer of their argument. In the 
first sum, the summand cannot exceed 2m/2 -1 (y -  Yl)" The second sum is 
less than 2 m - l ( y 2 m _ , -  Yztmm). Thus 

m ( y  -- Yl)  
Y2m-l+J • Y2 m-t 2m/2 +l (Y2m-1 - -  Y2t.,m) (A5) 

for 1 ~<j < 2 m-1. Now consider, f o r j  again gwen by (A2), y2m_j. By (12) 
we have that 

m--2  

l o g  Y2m_j ~ log Y2 m -- Z an log Y2, (A6) 
1l=0 

4 Professor M. E. Fisher has recently pointed out to us that this lemma is a special case of a 
result in the theory of subadditive functions. (See Theorem 6.6.1 of Ref. 17.) 
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so that 

m - 2  2 n 

Y2m-j < Y2m q- Z an 2-"'m-~ Cy2m - Y2.) (A7)  
~=o - J  

Using the same rearrangements and estimates as in the derivation of CA5), 
we then find 

Y2m-j<Y2m-}- m~Ym/2+Ylll) q-(Y2m--y2tm/2,) (AS) 

for 1 < j  < 2 m- l .  Thus for 2 m-1 ( n < 2 m, 

mCy--Y~) 
y2 m a 2m/2+1 C Y 2 m - I  - -  Y2[m/21) 

m ( y  -- y , )  
~ Y n ~ Y 2 m +  2m/2+, +(Y2m--Y2tm/Z~) CA9) 

which implies 

mCY -- Yl) 
l Y . - - Y 2 m I ~  2m/2+, -~- Y2m--Y2[m/2] CA10) 

Let m(n) = 2 tl-l~ Then we have from CA10) that 

[Y,,--YI~IY,,--Yv"'"'I+IY--Yzm'"'I n--+oo >0 CAll) 
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